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A disordered network of bonds with a fixed configuration can relax via a variety of unconstrained motions.
These motions can be directly inferred from the topological arrangement of constraints without any geometri-
cal information. We use the pebble game algorithm of Jacobs and Thorpe �D. J. Jacobs and M. F. Thorpe, Phys.
Rev. Lett. 75, 4051 �1995�� to decompose the system into separate rigid clusters and identify the remaining
degrees of freedom. Unconstrained motions can then be resolved in the form of translations and rotations of
isolated groups of bonds and the internal motion within bond groups. We show that each motion can be
assigned a characteristic thermal velocity and hence a relaxation time scale. We use this information to
construct a relaxation function and also examine the spatial distribution of relaxation time scales. We investi-
gate the sensitivity of the relaxation time scales and their spatial distribution when making individual bond
changes in the system, and we consider the dependence of these time scales on the underlying structure.
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I. INTRODUCTION

Disordered solids typically exhibit an excess of low-
frequency modes over that observed in the crystalline state of
the same material �1,2�. These excess modes are quasilocal
in character and arise directly from the failure of local par-
ticle arrangements to provide a homogeneous constraint of
particle motion. The failure of liquid configurations to fully
constrain the motion of the particles involved has long been
acknowledged, although loosely expressed, in the concept of
“free” volume. Recently �3�, it has been demonstrated that
the spatial heterogeneity of relaxation in a supercooled liquid
is strongly correlated with the spatial heterogeneity of the
low-frequency quasilocalized modes of the local potential
minima. Soft normal modes, in other words, play exactly the
role envisioned for free volume but with the advantage of
being uniquely defined. Motivated by this result, we are in-
terested in understanding the features of a disordered struc-
ture that determine the spatial heterogeneity of these soft
modes, the degree of nonlocality involved in the structure-
dynamics relationship and the factors that influence the evo-
lution of the spatial distribution of soft modes. In this paper
we describe an analysis of the spatial distribution of uncon-
strained motions in a disordered solid modeled using a ran-
dom bond network.

Goldstein �4� suggested that the relaxation of deeply su-
percooled liquids is dominated by the potential energy sur-
face. The local minima of the potential energy, christened
“inherent structures” by Stillinger and Weber �5�, correspond
to zero-temperature disordered solids. From this energy land-
scape perspective �6–9�, the dynamics of the deeply super-
cooled liquid is regarded as a temporal sequence of disor-
dered solids, linked by localized reorganization events. The
glass transition is essentially the temperature at which a par-
ticular disordered solid, or connected group of such solids,
persists for the time scale of the observation. The connection
between the relaxation of the supercooled liquid and the
quasilocalized soft modes is that these modes appear to be
the collective motions by which the irreversible transition
between inherent structures is accomplished �3�. Brito and

Wyart �10� showed that, in liquids simulated using small
systems, the intermittent relaxation events project almost
completely onto a single soft normal mode. Establishing a
direct and intuitive connection between soft modes and the
structures that give rise to them is the goal of this work.
Understanding how a configuration determines the spatial
pattern of motions is of central importance in developing a
useful microscopic treatment of glass transitions.

We need a simple and general description of disordered
solids with which to model the inherent structures. This de-
scription must allow us to identify the soft modes, their spa-
tial distribution, and their relationship to the configurations
with which they are associated. A representation of the dis-
ordered solids by constraint networks meets these require-
ments. Focusing on the topology of constraints, Phillips �11�
and Thorpe �12� developed a powerful treatment of the glo-
bal character of rigidity in network glasses. In a network of
rigid rotating bonds �“bars”� a cluster of sites connected by
bonds can belong to a single rigid cluster, with no internal
degrees of freedom remaining unconstrained. The only pos-
sible motions remaining to the particles in such a rigid clus-
ter involve the rotation and translation of the cluster as a
whole �distortions of the bonds, and hence vibrations, having
been excluded by construction�. The criterion for the rigidity
of a cluster of N particles in d dimensions is that the total
number of internal degrees of freedom, i.e., dN−d�d+1� /2,
equals the number of nonredundant bonds. Maxwell �13�, in
first treating this problem, applied the condition by counting
the number of bonds. This simple counting of constraints
neglects the possibility that some of the bonds have been
placed between particles that were already fully constrained
and, therefore, these bonds represent overconstraints. In
1995, Jacobs and Thorpe �14,15� developed an algorithm to
enumerate these overconstraints �in two dimensions� and so
determine, explicitly, the remaining floppy modes �i.e., un-
constrained degrees of freedom� for a given realization of the
constraint network. In this paper we shall demonstrate how
this enumeration of floppy modes provides an explicit de-
scription of dynamic heterogeneities in the disordered net-
work.
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At this point, it is worth clarifying the definition of a solid
in the context of constraints. A solid is a material that exhib-
its a nonzero yield stress under shear. This is first achieved,
with increasing bond density, when rigid clusters first span
the system. We shall, therefore, identify the onset of solidity
with the rigidity percolation transition. The term total rigid-
ity, in contrast, is used to describe a system in which no
internal floppy modes exist. The transition to total rigidity
will clearly occur at a density of bonds greater than that of
the transition to solidity �rigidity percolation�. For reference,
in granular systems governed only by repulsive interactions,
there is no rigidity percolation and what we call the total
rigidity transition is referred to, equivalently, as the isostatic
point or the jamming transition �16�. The basic thesis of this
paper is that inherent structures of a supercooled liquid �a�
are solids and �b� retain sufficient floppy modes to allow
them to undergo transitions to other inherent structures. In
the language of constraint networks, this thesis corresponds
to the proposal that inherent structures are described by con-
straint networks lying between the appropriate solidity and
total rigidity transitions.

To what amorphous solids do we think this type of model
applies? The conceptual connection between the inherent
structures of a covalent network-forming liquid such as silica
and a random network of bonds �with an appropriate coordi-
nation number� is straightforward. Although less obvious,
important connections also exist between constraint net-
works and close-packed glasses �such as amorphous metallic
alloys�, certainly at least to the degree that such glasses re-
semble granular packings. Constraint theory has been ap-
plied to problems of granular packing �17� since 1990. One
difficulty for the application of constraint counting to close-
packed glasses is that there appears to be just too many
neighbors. In random close-packed hard spheres, for ex-
ample, the average number of neighbors is �8, where neigh-
bors are defined as particles within 1.057 of a diameter of
each other �18�. If each neighbor represented a constraint,
then close-packed arrays of spheres such as this would cor-
respond to a significantly overconstrained system and, hence,
one for which the balance between the number of constraints
and degrees of freedom would appear to be of little rel-
evance. The fallacy of this view was demonstrated by
Moukarzel �19� who pointed out that steric packings �i.e.,
packings of particles interacting by short-range repulsions�
cannot typically sustain such an overconstraint and that the
number of actual constraints �i.e., contacts� is considerably
less than the number of nearest neighbors �as defined above�.
As a result, rigidity corresponds to the isostatic condition,
i.e., an exact balance of constraints and internal degrees of
freedom. The theoretical argument �19� has been supported
by the numerical results of Donev et al. �20�. Constraint
counting, in other words, remains of central importance to
the question of rigidity across a broad range of disordered
solids. While acknowledging that there are unresolved ques-
tions concerning the relationship between floppy modes of
the bond network and those of a dense amorphous arrange-
ment of particles dominated by steric interactions �19,21�,
we present our results with the belief that the local fluctua-
tions in constraint in the bond networks, analyzed in this
paper, provides useful insights into the relationship between

structure and dynamic heterogeneity in amorphous materials
in general, not just the covalent glasses.

The connection between fluctuations in constraints and
soft modes has already been explored in the study of protein
dynamics and of excess low-frequency modes in jammed
granular material. Jacobs et al. �22� pointed out that substan-
tial increases in efficiency for simulations of large amplitude
motions in globular proteins can be achieved if only the
equations of motion for the degrees of freedom associated
with soft modes are integrated. Employing an algorithm
similar in spirit to that described in this paper, these authors
have implemented this approach in a set of public domain
routines �23�. The influence on jamming transitions resulting
from the existence of soft local modes has also been studied
�24�. Wyart et al. �25,26� developed a comprehensive picture
of the dispersion of soft modes as the jamming transition is
approached from the high density side. Driven granular ma-
terial has been found to exhibit dynamic heterogeneities
similar to those seen in glass-forming liquids �27–29�.

In a previous brief report �30�, we have outlined some
results obtained from an analysis of unconstrained motions
in a network of constraints over a range of bond densities. In
this paper, we describe in detail the methods used to define
and characterize these motions. In the following section
�Sec. II� we introduce the pebble game algorithm and sum-
marize the treatment of constraints and floppy modes intro-
duced by Phillips and Thorpe to the study of network glass-
forming liquids. In Sec. III, we introduce the concept of
unconstrained motion. Our focus is on obtaining a character-
ization that is unambiguous and we discuss two different
methods for defining unconstrained motions. In Sec. IV we
explain the methods used to obtain a spatial distribution of
these unconstrained motions on a triangular lattice. We can
obtain a relaxation function for the random network as de-
scribed in Sec. V, where we also examine changes in relax-
ation time scales and their distribution when bonds are
moved.

II. CONSTRAINT COUNTING

A. Model

Our goal here is to address the general problem of motion
in a network of constraints—how to define the soft modes
and to characterize their relaxation properties and spatial dis-
tribution. As our subsequent description of particles involves
only the topology of constraints between them, the geometri-
cal features of the lattice are irrelevant. Constraints, in the
form of rigid bonds between neighboring particles, are as-
signed at random within the confines of a two-dimensional
�2D� triangular lattice. Particles are represented by vertices
of the lattice in periodic boundary conditions. Each set of
connected vertices represents an inherent structure of the 2D
liquid. The results shown herein have been obtained using a
2500 site lattice, but we have studied system sizes varying
from 100 to 10 000 vertices.

B. Redundant bonds and floppy modes

In 1979, Phillips used the stability condition, developed
by Maxwell to describe trestle structures, to address the ri-
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gidity of network glasses �11�. Each point in d dimensions
has d degrees of freedom. A rigid cluster, formed by a col-
lection of points, has d�d+1� /2 degrees of freedom. There-
fore, to form a rigid cluster, there must be at least dn−d�d
+1� /2 connections �or constraints� between the n points. In
granular studies �17,31�, the form of the constraints between
particles are not the same as those found in the linear elastic
networks of network glasses. Forces between the particles
are compressive only and these constraints are known as
struts. Another form of constraint is a cable, which can only
sustain tensive forces. Networks with either of these con-
straints are sign constrained. Combining elements of both
types can lead to interesting properties forming a tensegrity
structure �32,33�. In this paper, we shall consider only rigid
bonds �known as bars� between pairs of particles. There are
both compressive and tensive forces between particles, rep-
resenting a long-range attraction and a short-range repulsion.

If a rigid cluster of n points has exactly dn−d�d
+1� /2 bars, it could be minimally rigid or isostatic. How-
ever, to determine the number of degrees of freedom remain-
ing in the system �the floppy modes�, we cannot simply
count the number of bars. A bar can be redundant—that is,
the bond has been placed between two particles that are fully
constrained already, with the result that there is a local over-
constraint. To count the true number of floppy modes in a
network, it is necessary to identify these redundant con-
straints. This problem was solved in two dimensions by Ja-
cobs and Thorpe �14,15� with their introduction of the pebble
game algorithm. The algorithm calculates the number of
floppy modes, locates regions that are overconstrained, and
decomposes the system into separate rigid clusters.

The pebble game represents degrees of freedom as mov-
able objects, known as “pebbles.” For a system in two di-
mensions, the degrees of freedom available to a particle or
lattice site are represented initially by two pebbles attached
to each site �in d dimensions there would be d pebbles per
site�. The algorithm moves pebbles from their original sites
and onto bonds such that pebbles are only moved to bonds
connected to their original site, there is no more than one
pebble per bond, and the number of pebbles moved onto
bonds is maximized. The pebbles on bonds correspond to the
degrees of freedom removed by the bond constraints. Bonds
are added to the system one at a time and, for each new
bond, pebbles are moved around the system, with the inten-
tion of obtaining two free pebbles on each of the newly con-
nected sites, four in total. However, the movement of the
pebbles is restricted by the conditions that all independent
bonds must remain covered and that pebbles must remain
attached to their original sites. It is always possible to collect
three pebbles, but a fourth pebble corresponds to a floppy
degree of freedom and one of the four collected pebbles can
then be used to cover the bond. If four free pebbles cannot be
found, the bond is redundant and an overconstrained region
is identified. The overconstrained region consists of the set of
bonds searched in trying to free the fourth pebble.

The completed network can be decomposed into separate
rigid clusters, which define the structure of the system. A
rigid cluster has only three degrees of freedom and no other
floppy modes. Within the algorithm, rigid clusters are iden-
tified by testing pairs of sites. Two sites belong to the same

rigid cluster if an additional bond between them would be
redundant. The degrees of freedom remaining in the system,
floppy modes, are represented by pebbles which do not cover
bonds but remain attached to their original sites. As well as
rigid clusters, the system can also contain unbound particles,
which retain their original two degrees of freedom.

For a triangular lattice with randomly placed bonds, the
rigidity percolation transition, when the probability of find-
ing a spanning rigid cluster undergoes an abrupt jump in
magnitude, occurs at a bond density of 0.66 �14�. Figure 1
depicts a triangular lattice of 100 sites at bond densities be-
fore and after the percolation transition. Lattice sites are
shown by black dots or open circles �these sites are pivots;
see Sec. III� and lines show connecting bonds. The different
shades indicate the presence of separate rigid clusters. The
right panel shows a system containing overconstrained re-
gions, which are indicated by heavy lines.

As the inherent structures we are looking to model are
rigid structures, the relevant constraint networks are those
above the rigidity percolation transition, with a bond density
greater than or equal to 0.66. Our discussion shall be about
the dynamic consequences of inherent structures being either
at the rigidity percolation transition or at higher bond densi-
ties. We shall, however, include data from bond densities
below the transition density for completeness.

In granular studies, local stability is associated with con-
figurations at their isostatic state. Recent work by Wyart et
al., which includes a description of the origin of excess low-
frequency vibrational modes �25,26�, also describes systems
that form an isostatic state and, in addition, have minimal
fluctuations in coordination. In this paper, bonds are placed
randomly in the triangular lattice, without regard for the na-
ture of the bond. As we are not avoiding redundant bonds,
we do not produce an isostatic state and there are large fluc-
tuations in coordination. Even when redundant bonds are dis-
allowed, the solidity onset �rigidity percolation� and the iso-
static point do not necessarily coincide, with the former
occurring at a slightly lower bond density than the latter �34�.
We shall leave for future work the study of the influence of
nonrandom bond distributions, such as those responsible for
the isostatic state, on the heterogeneity of soft modes.

(a) (b)

FIG. 1. �Color online� Two example systems based on a trian-
gular lattice arrangement of 100 sites in periodic boundary condi-
tions are shown. The left panel shows a system at a bond density of
0.633 �before the percolation transition� and the right panel shows a
bond density of 0.667 �after the percolation transition�. Lattice sites
or vertices are shown either as open circles, for a pivot point, or as
black dots. The lines show bonds between the vertices. The differ-
ent shades indicate the presence of separate rigid clusters. Overcon-
strained regions, indicated by heavy lines, are present in the system
on the right.
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Weighting in favor of overconstraint is also possible, with
the weighting arising from the stabilization of locally pre-
ferred structures with a high symmetry �which thus avoid the
stress usually associated with overconstraint�. It is possible
that strong and fragile fluids might be distinguished by in-
herent structures that tend to the isostatic or overconstrained
landscapes, respectively.

It is worth emphasizing that we are, with the constraint
networks, modeling inherent structures and not the instanta-
neous structures we would expect to sample in a trajectory.
The density of bonds or constraints is not a control parameter
of the same form as temperature when cooling a supercooled
liquid toward the glass transition. In this sense, the onset of
solidity and total rigidity with changing bond density repre-
sents bounds within which we expect to locate the inherent
structures rather than transitions observable by adjusting
some experimental parameters. The transition from liquid to
glass on cooling is the result of the rapidly growing resi-
dence times of the system in particular inherent structures
and does not require any dramatic change in the nature of the
inherent structures themselves.

III. UNCONSTRAINED MOTIONS

The pebble game contains a spatial distribution of floppy
modes represented by the remaining free pebbles, and we
would like to convert this representation into a spatial distri-
bution of particle movement. Our answer to this problem is
presented in three parts. First, we explain how to identify a
set of particles associated with each free pebble, representing
an unconstrained degree of freedom or floppy mode. Next,
we demonstrate that this procedure must inevitably result in
a spatial distribution with an element of arbitrariness. The
situation is analogous to the arbitrary character of the eigen-
vectors of degenerate normal modes. Finally, we demonstrate
an alternative method to identify, for each particle, the un-
constrained motion to which they belong that involves the
smallest number of particles. The number of these uncon-
strained motions exceeds that of the number of floppy modes
and, thus, they cannot be independent of one another. Their
great advantage, however, is that their spatial extent is free of
the arbitrary aspects of the floppy modes.

Our first task then is to determine the sites over which a
given floppy mode is distributed. To begin, we remind the
reader that a pebble can only sit on the site to which it was
assigned or on a bond directly connected to that site, so an
individual pebble cannot move very far. It is possible, how-
ever, for an exchange “move” in which an initially free
pebble is moved from its site to an adjacent bond while the
pebble on that bond is moved to the site at the other end of
the bond �see Fig. 2, right panel�. The result is a free pebble
disappears from one site and a free pebble appears at the site
on the other end of the connecting bond. Via this process we
can conclude that the two sites are part of the same floppy
motion. Further sites are added to the collective mode by
similar shuffling �not involving any other free pebbles ini-
tially present� until all possible permutations have been ex-
hausted, leaving us with the final representation of the floppy
mode. The procedure is then repeated for each of the free
pebbles in turn.

As indicated at the start of this section, there is a problem
associated with asking for the spatial distribution of each
floppy mode. The problem is that, if you renumber the sites
so that the pebble game carries out its moves in a different
sequence, you can get a different spatial picture of the floppy
modes. While the differences are often slight, they are dis-
concerting and obviously call to question the physical sig-
nificance of the spatial pictures of the modes. For an ex-
ample, we show a pentagonal cluster in Fig. 2. Two different
distributions of the five free pebbles are depicted, represent-
ing the three degrees of the freedom of the entire system plus
two internal modes. While the symmetric distribution �left
panel� results in the overall modes and both internal modes
involving all five particles, for the asymmetric distribution
�right panel�, the overall rotation is not easily separated out
and we are left with three internal modes: two involving two
particles and one involving three particles. The sequential
nature of the pebble movements in the pebble game means
that the final deposition of free pebbles depends on the se-
quence in which the moves were performed.

This problem with using a direct floppy mode analysis is
resolvable, for example, with appropriate rules where one
could define a set of floppy modes with a minimal spatial
extent. However, it is worth reflecting on the information that
we require with regard to the spatial distribution of modes.
We are interested in how mobility is related to structure and
therefore require an intuitive connection between the struc-
ture and the resulting dynamics. In molecular dynamics
simulations, dynamic heterogeneities are defined in terms of
some measure of mobility assigned to each particle. In the
context of the constraint network, we can ask an analogous
question. For each particle, what is the unconstrained motion
to which they belong that involves the smallest number of
particles? We chose the smallest one because that will be the
fastest mode of relaxation available to that particle. The
problem of describing the spatial extent of floppy modes has
previously been addressed for the analysis of flexibility in
proteins �22,23,35,36�. The biomolecular flexibility analysis
software �FIRST� �23� includes a calculation of a “flexibility
index,” which sidesteps the issue by calculating a density of

FIG. 2. The two panels show a system of five sites and five
bonds forming a pentagon. Two possible arrangements of pebbles
describing the degrees of freedom within the system are shown. The
left panel shows a symmetrical pebble arrangement and the right
panel shows one possible final arrangement resulting from a pebble
game analysis of the system. In the symmetrical arrangement of
pebbles, moving any of the free pebbles onto a bond and subsequent
shuffling of pebbles to different bonds �ignoring any other free
pebbles� allows a pebble to be freed at any of the other vertices of
the pentagon; every degree of freedom is delocalized across the
whole system. In the right panel, three of the free pebbles remain
localized and cannot be moved around the whole system.
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floppy modes rather than considering each mode individu-
ally, and a method involving the locking of rotatable bond
dihedral angles �or pivots� has also been implemented
�22,37�. Here, we shall introduce a similar method for a two-
dimensional system which includes the concept of a pivot
cluster—a set of rigid clusters connected by flexible link-
ages.

This alternative description of motion within the system
can be obtained by using information from the pebble game
in terms of the different rigid clusters in the system and the
sites connecting these different rigid clusters that are called
pivots. Unconstrained motions in the constraint network for
isolated collections of bonded sites come in two forms. Each
isolated �or free� cluster has three unconstrained degrees of
freedom �two translational and one rotational�. The second
type of unconstrained motion arises from flexions within
nonrigid free clusters. A nonrigid cluster can be resolved into
a set of rigid subclusters linked together by common sites
that act as pivots. A single free cluster may include many
pivots. In fact, there are normally many more pivots within
the system than remaining degrees of freedom �i.e., unas-
signed pebbles�, as the motion of each pivot is not normally
independent of the other pivots in the system.

We identify unconstrained motions using the following
protocol: �1� all isolated sites have two degrees attached to
them �translational modes�; �2� all isolated clusters have
three degrees of freedom distributed evenly across all the
participating vertices �translational and rotational modes,
these clusters can be composed of groups of rigid clusters
that are connected by pivots�; and �3� for each pivot point
�i.e., a vertex common to two or more different rigid clus-
ters� a bond is placed across the pivot so that the two adjoin-
ing clusters are linked. The pebble game routine is rerun and
the change in rigid clusters due to the probe bond is deter-
mined. In this way, by placing a bond across each pivot and
noting the other pivots which no longer exist as a result of
placing this bond, groups of pivots can be identified. The
clusters joined together by pivots within the same group
form a pivot cluster. Each pivot cluster describes one uncon-
strained motion.

If the pivot grouping described above is done by testing
each pivot separately, the result is found to be independent of
the starting positions of the free pebbles and the order of
pivot testing, and so provides a unique description of move-
ment within the system that does not depend on the order of
bond construction. This is demonstrated in Fig. 3, where we
compare the floppy mode �right panel� and the unconstrained
motion �left panel� methods for the interconnected lattice
structure shown in the left panel of Fig. 1. Four different
lattice site labeling schemes are used so that bonds are added
to the system in a different order; the resulting movement of
pebbles changes as well as the order of pivot testing. Results
are identical for the unconstrained motion analysis; but, for
the floppy mode analysis, different site labels result in dif-
ferent distributions of modes.

For the unconstrained motion analysis, we typically find
more unconstrained motions than there are floppy modes, so
that while the floppy modes are independent, the uncon-
strained motions generally are not. Again we can illustrate
this feature with the pentagonal cluster �see Fig. 4�. With

only two internal floppy modes, the pentagon has five pivot
points and so five unconstrained motions. Due to the pres-
ence of the ring, movements about pivot points are not inde-
pendent. Figure 5 shows the average ratio of possible uncon-
strained motions to the number of floppy modes for a range
of bond densities. The unconstrained motions include three
modes �translation and rotation� for each free cluster, two
modes �translation� for each free particle, and one mode for
each pivot cluster. If our identification of unconstrained mo-
tions required that they are independent, then there could
only be as many unconstrained motions as there were floppy
modes and the ratio in Fig. 5 would be 1. The ratio peaks
before the percolation transition at a bond density of �0.65.
The high value at this bond density can be attributed to the
presence of ring structures formed by rigid clusters and con-
necting pivots. Statistics for the number of unconstrained
motions and as well as their distributions as functions of
bond density can be found in Ref. �30�.

To summarize, the unconstrained motions in a constraint
network are the combination of the movement of isolated
free clusters and the internal flexing of rigid clusters joined
by pivots. In the next section, we shall explain how to trans-
late the size of a cluster, free or pivot, into a time scale for
the unconstrained motion of the particles belonging to that
cluster.

FIG. 4. �Color online� For a system of five sites joined together
to form a pentagon, a pebble game analysis shows that each bond is
a separate rigid cluster. Therefore, pivot points connecting different
rigid clusters are present at each vertex. The left panel shows a test
bond, represented by a dashed line, placed across the leftmost pivot.
The right panel shows the resulting rigid cluster of three bonds
formed by this test bond. None of the other bonds are affected by
this new bond and there are four remaining pivots.

0.0 0.2 0.4 0.6 0.8 1.0
np

0.0 0.2 0.4 0.6 0.8 1.0
np

(a) (b)

FIG. 3. �Color online� Distributions of participation ratios np,
for all motions in the system, are shown for the interconnected
lattice structure in the left panel of Fig. 1. The results are derived
from an analysis of unconstrained motions �left panel� and an analy-
sis of floppy modes �right panel�. The graphs compare results for
four different site labeling schemes and the histograms have been
shifted vertically for clarity. The results are identical in the uncon-
strained motion analysis, confirming that the representation of un-
constrained motions is unique. The same cannot be said for the
representation of modes from the floppy mode analysis as we see
that different site labels result in different distributions of modes.
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IV. ASSIGNING TIME SCALES

For each unconstrained motion, there is a characteristic
thermal velocity determined by the inertia and the tempera-
ture. If a particular motion involves a large number of par-
ticles, the associated thermal velocity will be slower. The
process of calculating a time scale is simple for the relax-
ational modes of the free clusters. For the one rotational
mode, we can obtain the equilibrium average of the angular
velocity from the moment of inertia I of the whole cluster as
follows:

��2� =
kBT

I
. �1�

The role of the temperature here is simply to rescale all an-
gular velocities so, in the following discussion, we shall set
kBT=1. The moment of inertia is calculated by assigning a
mass of 1 to each lattice site and a length of 1 unit to the
distance between adjacent sites. The total mass of the cluster,
therefore, is given by the number of constituent sites, and
this replaces the moment of inertia to give the characteristic
velocity of the two translational modes.

Structural relaxation requires that a particle’s position be-
comes decorrelated with its position, and those of its neigh-
bors, at an earlier time. Particles confined within a free clus-
ter can still undergo such a relaxation via this translation and
rotation of the cluster as a whole. We shall therefore identify
the inverse thermal velocity of the cluster as the structural
relaxation time � for that cluster, so that

� = ��2�−1/2. �2�

We must also assign time scales to the internal motions
within free clusters, which we have resolved into groups of
rigid clusters connected by interdependent pivots, or pivot,
clusters. The motion within a pivot cluster can be likened to
a model studied by Zwanzig, consisting of random clusters
of intermeshed cogs �38�. In the Zwanzig model, the moment
of inertia is equal to the sum of the individual moments of
inertia of all the coupled cogs in the cluster; the rotation of
any one cog requires the rotation of all the other cogs in the

cluster to which the one of interest belonged. The compari-
son is imprecise as we need to restrict the cogs to small
angular motions; but with this restriction, they provide a
simple picture of the motion of the rigid clusters that make
up a pivot cluster, with pivots acting as the cogs’ meshed
teeth. The rotation of any rigid cluster in the pivot group
requires the motion of other rigid clusters in the group.
Hence, the moment of inertia of the pivot cluster is related to
the sum of the moments of inertia of all the rigid clusters
which make up that pivot cluster. Our first step therefore is to
determine the moments of inertia of each individual rigid
cluster.

Figure 6 shows moments of inertia for rigid clusters of
varying size. These clusters were found for random bond
arrangements within the triangular lattice of 2500 sites with
bond densities between 0.433 and 0.67. A linear regression
fit to the data provides a good representation of the relation-
ship between cluster size and moment of inertia, ln I=
−2.13+2.05 ln s. Despite the variety of shapes of the rigid
clusters, we find that the relation between I and s for the
clusters is very similar to that of solid disks with a uniform
mass. Therefore, it appears to be unnecessary to calculate the
moment of inertia for each rigid cluster. Instead, we can use
the size of the cluster to estimate its moment of inertia. �The
same method can also be applied to calculating the moment
of inertia of free clusters.� The compact nature of the clusters
is surprising; this would not be expected for studies of con-
nectivity rather than rigidity percolation.

As we will later be concerned with finding the fastest
motions for each site, our scheme for determining the total
moment of inertia and hence the relaxation time scale of a
pivot cluster requires a small modification. Consider an iso-
lated cluster consisting of two rigid clusters, one large and
one small, linked at a pivot point as shown in the two panels
of Fig. 7. Using our current method, the sum of the moments
of inertia will be dominated by the larger rigid cluster. This
obscures the fact that the smaller cluster can move, relative
to the position of its larger partner in a manner that is inde-
pendent of the size of the large cluster �left panel�. The rel-
evant moment of inertia for this relaxation is merely that of
the smaller cluster itself. To assign a time scale to the larger
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FIG. 5. The average number of unconstrained motions per
floppy mode, nmotions /nfloppy, is shown as a function of bond density
�. The unconstrained motions include three modes—two transla-
tions and one rotation—for each free cluster, two modes �transla-
tion� for each free particle, and one mode for each group of inter-
dependent pivots. The dashed line shows the ideal ratio of one
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FIG. 6. �Color online� The variation in the moment of inertia I
of rigid clusters with their size s. Cluster size is given by the num-
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cluster, we can consider its movement relative to the smaller
cluster fixed in position �right panel�, and again the relevant
moment of inertia is that of the single cluster.

This method can be extended to pivot clusters comprised
of more than two rigid clusters. In effect, for each pivot
cluster, we are calculating the two shortest possible time
scales for relaxation. The first time scale is obtained by fix-
ing the largest rigid cluster, and this time scale is applied to
the particles in all the other rigid clusters. The second time
scale, for particles in the largest rigid cluster, is obtained by
examining motion relative to the second largest rigid cluster.

Figure 8 compares the moments of inertia for the fastest
relaxation time in each pivot group, calculated by summing
the exact moments of inertia of each cluster �Icalc� and �Iest�
by summing moments of inertia given by I=0.119s2.05. All
the data are clustered close to the line given by Icalc= Iest,
showing that the estimation is accurate.

We can now obtain time scales of relaxation for each
pivot and free cluster using the appropriate moment of iner-
tia. In Fig. 9 we have plotted the distribution of relaxation
frequencies due to pivot and free clusters, for a number of
bond densities. The analogous distributions of cluster sizes
are provided in Ref. �30�. Close to the rigidity percolation
transition, we see that the frequency distribution of uncon-
strained modes stretches continuously from the highest fre-
quency to the lowest allowed by the system size. These re-
sults are in qualitative agreement with calculations for

particles with short-range interactions �24�. For bond densi-
ties above the percolation transition, we see the distribution
of frequencies break into two separate groups: one located
around the high frequency while the other is centered at a
frequency that vanishes with increasing system size. The ap-
pearance of this broad spectrum of soft modes is a charac-
teristic of structures close to the rigidity percolation transi-
tion, i.e., structures of minimal rigidity. The reader is
reminded that we have not included the phonon density of
states, associated with a finite elastic constant for the bonds.

Examining the relaxational frequencies in Fig. 9, it is
clear that some modes are limited only by the system size
and are in fact of infinite extent. These modes should be
excluded from our analysis and include the translation and
rotation of the system as a whole. We find �30� that there is
one large free cluster involving most of the system over
nearly the whole range of bond densities. This free cluster is
of infinite extent and we consider the motion of this cluster
to have an infinite relaxation time as corresponding to mo-
tion of the system as a whole. However, particles within this
cluster can still move through internal motion. A rigid cluster
that spans the system should also be regarded as being of
infinite extent and can be assigned an infinite relaxation time.
Particles within a spanning rigid cluster cannot move. The
largest free cluster is easily recognized but a spanning rigid
cluster may or may not be present. We test for a spanning
rigid cluster by replicating the system to form a 100�50
lattice. When the pebble game is rerun, a cluster is found to
be spanning if the number of floppy modes is less than
double the number in the original system. If the cluster spans
in one direction, the number of modes is reduced by 2; if it

FIG. 7. �Color online� The two panels show a pivot cluster
formed from one large rigid cluster and one small rigid cluster,
which is a single bond. Motion of the small cluster is independent
of the size of the large cluster as indicated in the left panel. By the
same token, we can describe the motion of the larger rigid cluster
with the small cluster frozen in position �right panel�.
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ing the largest cluster. This is calculated by summing the exact
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spans in both directions, the number of modes is reduced by
3. This method is very simple but can fail if the rigid cluster
has few overconstraints and no longer exists as a single rigid
cluster spanning the system when replicated. Such a cluster
is only rigid due to the finite nature of the system. As the
system size is increased, the extra degrees of freedom result-
ing from replication of the system can be absorbed more
easily.

V. RELAXATION

In the model system we have described thus far, there are
a fixed number of randomly applied constraints. We have
omitted bond breakage and formation so that all bonds are
treated as permanent. No particle contained within a rigid
cluster that spans the system can relax, but nonrigid particles
in the system can relax. In the following analysis, we will
assume that such nonrigid particles can relax fully via their
fastest relaxational mode. Note, however, that relaxation in a
pivot cluster that spans the system is likely to be restricted.
Strictly, even small free clusters may be unable to relax if
sufficiently confined by their neighbors. The latter effect can
be ignored as the number of free clusters left �in the random
bond model, at least� at high bond density will be small.

We use the rotational relaxation expression due to Zwan-
zig �38� for the cog network to describe the structural relax-
ation of the permanent disordered network. In this expres-
sion, each individual particle relaxes as

�i�t� = exp�− ��i
2�t2/2� . �3�

�i�t�=1 for all the particles in spanning rigid clusters that
cannot relax as we have effectively set their moments of
inertia to �. The overall relaxation is then

��t� =
1

N
�
i=1

N

�i�t� . �4�

When calculating the frequencies for each collective mode as
plotted in Fig. 9, we found that some particles participated in
many collective modes and hence could be associated with
many different time scales. To calculate the relaxation func-
tion for each particle, we have chosen to simply assign to
each particle the shortest relaxation time out of all the soft
modes in which the particle participates.

Figure 10 shows ��t� for five different bond densities:
0.433, 0.597, 0.65, 0.66, and 0.67 averaged over 100 differ-
ent bond configurations. For the two lowest densities, full
relaxation occurs but relaxation is limited without bond
changes for the higher densities. The cause of this lack of full
relaxation is the existence of spanning rigid clusters as
shown for single configurations in Fig. 11. This figure shows
spatial maps of the relaxation time scales for each particle for
the four higher bond densities. The darkest regions show the
spanning rigid clusters where no relaxation can occur.

As bond density is increased toward the percolation tran-
sition, we see an increase in the size of different kinetic
subregions as well as a growth in the distribution of time
scales. Above the transition, the soft modes appear as in-
creasingly isolated pockets embedded in a spanning rigid

cluster. This suggests that an inherent structure resembling a
network close to the jamming transition will have a hyper-
heterogeneous dynamics, while an inherent structure corre-
sponding to a higher bond density will have dynamic hetero-
geneities reminiscent of point defects in solids.

Structural relaxation in a supercooled liquid requires that
multiple inherent structures be visited. While we have post-
poned the inclusion of bond fluctuations to future work, we
have examined the sensitivity of bond configurations at dif-
ferent densities when one bond is moved to a randomly cho-
sen vacant position in the system. As shown in Fig. 12, this
sensitivity also depends dramatically on the proximity of the
system to the rigidity percolation point. Close to rigidity per-
colation, there is a high degree of sensitivity of the mode
maps to changes in bond configuration. This sensitivity de-
creases rapidly as the bond density increases above the per-
colation value. Again, we are concerned with the shortest
relaxation time for each site and examine the changes in
these shortest relaxation times. We can quantify the changes
in time scale by calculating the variance in time scale for
each site for 100 different bond moves. This variance is
given by

�2 = ���i − ��i��2� , �5�

where �i is the shortest time scale for the site in the configu-
ration formed by the ith bond move. For particles that cannot
relax, in spanning clusters, we use a value of �i=1000. Light
gray areas, as shown by the top of the logarithmic scale bar,
represent regions of no change. For intermediate bond den-
sities, before and around the percolation transition, there are
relatively large changes in time scale for most sites. At low
and high densities, only small pockets of high variability are
observed.

When we start to change a configuration by making single
bond moves at these densities, we see that the general shape
of the distribution of time scales does not change but that
large changes in the spatial distribution of kinetics can be
observed. If the spatial distribution of soft modes can be
substantially changed by a small number of bond changes it
would suggest �i� that the soft modes will be rapidly distrib-
uted through the system via bond fluctuations in stark con-
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FIG. 10. �Color online� The overall relaxation ��t� averaged
over 100 different random bond configurations for each of five dif-
ferent bond densities, shown from bottom to top: 0.433, 0.597, 0.65,
0.66, and 0.67. For the high bond densities, complete relaxation of
the system does not occur for a fixed bond configuration; full relax-
ation would require changes in bond configuration.
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trast to diffusing defect models and �ii� that the spatial dis-
tribution of soft modes can provide little information about
the long-time evolution of the configuration. The changing
spatial distribution is also relevant when using dynamic het-
erogeneities to identify a dependence on the underlying
structure. This method requires a connection to exist between
structure and the spatial pattern of the dynamics. Specifically,
if small variations in structure can produce huge changes in
the pattern of the dynamics, then the analysis of the dynam-
ics will need to be quite sophisticated.

However, although we see that the spatial distribution of
modes can change dramatically as a result of small changes
in configuration, these changes are directly related to the
underlying structure via changes in the arrangement of rigid-
ity within the system. It is possible to equate the changes in
relaxation times shown by the maps with changes in the size
of rigid clusters. Determination of relaxation times for the
original configuration required the knowledge of motions in
the form of interdependent pivots and isolated or free clus-
ters, both of which can be composed of many rigid clusters.
For the pivot groups, the total moment of inertia and hence
the relaxation time are found by summing the moments of
inertia of constituent rigid clusters. If moving one bond re-
sults in a change in size of one of the rigid clusters, this
change in size gives the change in the total moment of inertia
via the relation I=0.119s2.05; hence, 		I
0.345	s. For free
clusters, relaxation is given by the sum of the masses of
constituent rigid clusters and hence any change in the size of
a constituent rigid cluster can again be directly related to a
change in relaxation time.

The two panels in Fig. 13 compare changes in relaxation
time scale with changes in the size of rigid clusters. The left
panel shows the distribution of changes in fastest relaxation
time scales for 100 single bond moves from the same initial
configurations for four different bond densities �as shown in
Fig. 11�. The right panel shows the changes in rigid cluster

size for the same bond moves. The change in rigid cluster
size has been scaled by 0.345 to allow a direct comparison
between the two panels. It is clear that changes in the rigid
cluster sizes are directly responsible for the time scale
changes. However, although this gives a structural cause to
the evolving heterogeneity, the nontrivial aspect of this con-
nection is relating changes in rigid cluster size in one part of
the system to the resulting time scale changes, which can
occur throughout the system.

VI. DISCUSSION

In a paper on the gel transition in 1991, Martin et al.
�39,40� began their discussion of the theory of relaxation as
follows: “at this point it is probably evident to the perspica-
cious reader that the phenomenology of the relaxation of
density fluctuations in gels is complex �or at least not
simple�.” The challenge of describing relaxations which are
“at least not simple” not only persists, but has, over the en-
suing 17 years, become increasingly identified as the com-
mon essential element for progress in understanding a broad
range of materials: glass-forming liquids, proteins, colloidal
suspensions, microemulsions, and granular materials.

In a cluster description of complex relaxation, attention is
focused on the small displacements associated with the re-
laxation of structure and stress. Coupling of the motion of
different clusters is neglected. For the gel transition �39,40�,
such a coupling has been described in terms of a cluster of
size R diffusing in a medium whose viscosity has contribu-
tions from the clusters of size less than R and whose con-
finement is determined by clusters of size greater than R.

Collective motion is explicitly considered for relaxation
in our constraint network. A partial treatment of collective
motion and its cooperative character emerges through pivot
connections between rigid clusters. Constraints induce local
rigidity forcing a group of particles to move as one while
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FIG. 11. �Color online� Spatial maps of the shortest relaxation time per particle for a number of different bond densities from left to right:
0.597, 0.65, 0.66, and 0.67. We consider each unconstrained motion in the system involving the translation or rotation of free clusters or the
collective motion of groups of rigid clusters connected by interdependent pivots. Each site on the lattice may be involved in any number of
unconstrained motions but is assigned a time scale according to the mode with the maximum thermal velocity. The logarithmic scale gives
the relaxation time for each site.
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FIG. 12. �Color online� Spatial maps of the variance in shortest relaxation time for each particle at a number of different bond densities
from left to right: 0.597, 0.65, 0.66, and 0.67. The variance is given by comparing time scales for 100 systems formed by one bond change
from the same initial configuration as shown in Fig.11. The logarithmic scale gives the variance in relaxation time for each site.
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pivots link these clusters so that motion of one can only
occur with the cooperative motion of the other clusters in the
pivot group. However, our pattern of constraints does not
change with motion. The rotation of a rigid cluster through
any finite angle could result in new interactions with clusters
not initially connected via any constraints. For the nonlinear
response of the network, such a geometrical confinement is
of considerable importance. However, we suggest that it is
the topological character of the constraints, treated here, that
dominates the linear response.

Two important features of the constraints have not been
dealt with in this paper. While we have not considered bond
relaxation in this paper, it is clear that the kinetics of bond
breaking and making may well be related to the kinetics of
the unconstrained motions remaining in the network. This is
an acknowledgment that the lifetime of each bond is deter-
mined, not just by the stability of the isolated bond, but also
that of the extended network in which it resides. In a recent
simulation study of the viscosity in molten mixtures of LiF
and the network-forming BeF2, Salanne et al. �41� noted just
such an increase in the lifetime of BeF bonds with the con-
centration of BeF2, an increase that matched that observed
for the viscosity.

Our second omission concerns the link between our con-
figurations, representing inherent structures, and the sam-
pling of these structures in a trajectory at finite temperature.
A proper treatment of this will involve both the inclusion of
the energy associated with bonds and any interactions, attrac-
tive or repulsive, between bonds and a specific description of
the kinetics associated with fluctuations in the bond network.
With bond density as the control parameter, the path from
simple liquid to disordered solid via a rigidity percolation
transition is straightforward and inevitable. There are, how-
ever, a number of possibilities for the liquid to solid transi-
tion when temperature is the control parameter. Work ad-
dressing both these limitations of the present study is
currently underway.

The structures considered in this paper are formed by ran-
domly placing bonds within a 2D triangular lattice. Different
protocols for building the network can be considered, such as
stress avoidance �disallowing redundant bonds� or bond ag-
gregation �favoring overconstrained regions�. Systems
formed using these different protocols also show rigidity per-
colation and total rigidity transitions. A larger space of pos-
sible inherent structures can be considered by combining dif-
ferent protocols and this may be relevant for examining the
behavior of different glass-forming systems.

VII. CONCLUSION

In this work, we have shown how one can obtain a unique
spatial resolution of the motions that remain unconstrained,
starting with a generic description of a disordered solid. The
character of this distribution is found to change significantly,
depending on whether the solid is close to a rigidity perco-
lation or to the onset of total rigidity itself where all uncon-
strained motions vanish. Alongside this dramatic change in
spatial distribution, we find substantial changes in the man-
ner in which these heterogeneities are expected to evolve in
time. While for solids near rigidity the isolated unconstrained
motions will evolve incrementally, near the rigidity percola-
tion, the changes are expected to be abrupt and extend over
large regions of the sample.

Local mode structure can provide powerful insights into
complex cooperative dynamics �3,22�. This study was moti-
vated by a desire to provide a model of the local minima, or
inherent structures, of a supercooled liquid using a descrip-
tion of amorphous rigidity. We have not addressed, nor was it
our goal to do so, the question of where the inherent struc-
tures of a particular supercooled liquid should lie along our
spectrum of rigid disordered networks, ranging from rigidity
percolation to total rigidity. The dynamic heterogeneity of
the soft modes varies considerably over this spectrum. We
find that both the degree of heterogeneity of the local mode
structure and its sensitivity to small configuration changes
exhibit clear maxima on approaching the rigidity percolation
from either direction in bond density. Such behavior is remi-
niscent of the avalanches described in particle simulations
�10�. In contrast, inherent structures that are better described
by higher bond densities would be characterized by isolated
soft modes embedded in the spanning rigid cluster. The
gradual evolution of these highly localized soft modes with
configurational change would resemble something more like
defect diffusion.
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FIG. 13. �Color online� The two panels show changes recorded
for 100 single bond moves from initial configurations at four dif-
ferent densities, from bottom to top: 0.597, 0.65, 0.66, and 0.67.
The left panel shows the distribution of changes in the shortest
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the changes in rigid cluster size �	s� for the same bond moves. The
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